Regulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA.

نویسندگان

  • Inez R Terpstra
  • L Basten Snoek
  • Joost J B Keurentjes
  • Anton J M Peeters
  • Guido van den Ackerveken
چکیده

Gene expression differences between individuals within a species can be largely explained by differences in genetic background. The effect of genetic variants (alleles) of genes on expression can be studied in a multifactorial way by the application of genetical genomics or expression quantitative trait locus mapping. In this paper, we present a strategy to construct regulatory networks by the application of genetical genomics in combination with transcript profiling of mutants that are disrupted in single genes. We describe the network identification downstream of the receptor-like kinase ERECTA in Arabidopsis (Arabidopsis thaliana). Extending genetical genomics on the Landsberg erecta/Cape Verde Islands (Ler/Cvi) recombinant inbred population with expression profiling of monogenic mutants enabled the identification of regulatory networks in the so far elusive ERECTA signal transduction cascade. We provide evidence that ERECTA is the causal gene for the major hotspot for transcript regulation in the Arabidopsis Ler/Cvi recombinant inbred population. We further propose additional genetic variation between Ler and Cvi in loci of the signaling pathway downstream of ERECTA and suggest candidate genes underlying these loci. Integration of publicly available microarray expression data of other monogenic mutants allowed us to link ERECTA to a downstream mitogen-activated protein kinase signaling cascade. Our study shows that microarray data of monogenic mutants can be effectively used in combination with genetical genomics data to enhance the identification of genetic regulatory networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning

Plants use cell-surface-resident receptor-like kinases (RLKs) to sense diverse extrinsic and intrinsic cues and elicit distinct biological responses. In Arabidopsis, ERECTA family RLKs recognize EPIDERMAL PATTERNING FACTORS (EPFs) to specify stomatal patterning. However, little is known about the molecular link between ERECTA activation and intracellular signaling. We report here that the SOMAT...

متن کامل

Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape.

Arabidopsis ERECTA, a Leu-rich repeat receptor-like Ser/Thr kinase (LRR-RLK), regulates organ shape and inflorescence architecture. Here, we show that a truncated ERECTA protein that lacks the cytoplasmic kinase domain (DeltaKinase) confers dominant-negative effects when expressed under the control of the native ERECTA promoter and terminator. Transgenic plants expressing DeltaKinase displayed ...

متن کامل

A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation.

Spatiotemporal-specific cell proliferation and cell differentiation are critical to the formation of normal tissues, organs, and organisms. The highly coordinated cell differentiation and proliferation events illustrate the importance of cell-cell communication during growth and development. In Arabidopsis thaliana, ERECTA (ER), a receptor-like protein kinase, plays important roles in promoting...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 154 3  شماره 

صفحات  -

تاریخ انتشار 2010